
An Exploratory Experiment on
Metamodel-Transformation Co-Evolution

Djamel Eddine Khelladi, Horacio Hoyos Rodriguez, Roland Kretschmer, and Alexander Egyed
Institute for Software Systems Engineering
Johannes Kepler University Linz, Austria

Email: {djamel_eddine.khelladi, horacio.hoyos_rodriguez, roland.kretschmer, alexander.egyed}@jku.at

Abstract—Metamodels, like any other software artifacts evolve
throughout time. As a consequence, all dependent artifacts may
need to be co-evolved accordingly, including model transforma-
tions. Transformations are a key component of an automated
development solution, thus it is crucial to automate their co-
evolution while guaranteeing that they remain correct. However,
there is little known about what aspects and characteristics must
be automated in a manual co-evolution and in particular how it
should be correctly automated. Few approaches exist, but it is
not clear to what extent those approaches are able to automate
the manual co-evolution of model transformations.

In this paper, we report on an exploratory experiment we con-
ducted to better understand the co-evolution of transformations
in practice and to assess the usefulness of the current existing
techniques. 15 participants were involved in our experiment to
monitor how they co-evolve transformation rules in response
to metamodel evolution. Our analysis results show that while
existing approaches support the user with an automatic impact
analysis, they do not consider proposing a very large spectrum of
alternative resolutions. Among the 14 resolutions that occurred
in our experiment, on average only 4 (up to 6) were supported
by the existing approaches.

I . I N T R O D U C T I O N

Model-Driven Engineering (MDE) has shown to be effective
in the development and maintenance of large scale and
embedded systems [9]. Today modeling languages play a
significant role in all phases of development processes [25].

The very foundation of modeling languages are their meta-
models [9]. The metamodels define the vocabulary and syntax
construction of the language. Metamodels are the foundation for
the creation of model instances. However, it is often overlooked
that metamodels also serve for the creation of other artifacts
such as writing model transformations. Model transformations
play a crucial role in MDE [23], [17] by specifying and
automating the transformation of a source model to a target
model (i.e., model-to-model transformation) or to a target text
(i.e., model-to-text transformation).

One of the foremost challenges to deal with in MDE is
evolution of metamodels and its impact on artifacts that use
the metamodels as a foundation. As a result of metamodel
evolution, transformations may become invalid and hence
may need to be co-evolved accordingly. Knowing that model
transformations are used for different activities such as code
generation [8], model refactoring [16] and migration [26],
it is crucial to understand how to efficiently co-evolve the
transformations whenever the metamodel evolves.

Automating the co-evolution is widely agreed on [6],
however, little is known about the requirements of such an au-
tomation task [7]. In particular, does providing impact analysis
to the developers help them, or is it already covered by the
transformation languages/editors? Should automatic approaches
provide unique resolutions per impacted transformation? Or
should an approach cover all possible alternative resolutions?
To what extent does the knowledge of metamodel evolution
changes help in co-evolving the transformations?

The topic of transformation co-evolution has been increas-
ingly investigated in the last years. However, little is known
whether the proposed approaches are currently sufficient to
automate various scenarios of transformations’ co-evolution.
While existing studies compared transformation tools and
transformation-based co-evolution [10], [20], [21], [19], to the
best of our knowledge no study has investigated the manual
co-evolution of transformations and to what extent it could be
automated with the existing approaches.

In this paper, we conduct an experiment with 15 participants
that manually co-evolve model-to-model and model-to-text
transformations. We investigate the above questions and provide
new insights on aspects and characteristics of an efficient
automated co-evolution, while highlighting the main learned
lessons. We further evaluate the capabilities of the current
existing approaches in terms of supported resolutions, i.e., to
what extent existing approaches can be used to automate the
manually performed resolutions in our experiment. Finally, we
also reflect on how the state of the art can be improved in
future work.

The experiment results show that transformation languages
provide no support for impact analysis and errors are only
reported during execution. Existing co-evolution approaches
were able to support on average 4 resolutions (up to 6) out of
the 14 that have been manually applied by our participants. This
is partially explained due to the fact that alternative resolutions
were not considered by the existing approaches.

This paper is further structured as the following. Section
II describes the method of our experiment, the selected
participants, the used data and research questions. The results’
analysis is then given in Section III. Section IV discusses a
follow-up survey with the participants. Sections V and VI
discuss respectively the threats to validity and related works
before Section VII concludes the paper.



I I . R E S E A R C H M E T H O D O L O G Y

Our experiment involved 15 participants in the context of
an MDE lecture. The participants had to evolve the metamodel
and then to co-evolve the corresponding model transformations.
This section further details our research methodology.

A. Study Participants

The experiment subjects consisted 15 master students in
computer science, studying at the JKU Linz. They were selected
out of 38 students. Those 15 students in addition of a past
working experience, they have been working in parallel as part
time programmer either in our computer science department
in research projects or in companies as interns. This aimed to
select a near experienced software developer.

B. Participants’ Tasks

Our aim was to design a set of tasks that are close in scope
and complexity to real tasks performed by developers, while
being able to analyze the results effectively. In this experiment,
we have designed the following tasks:

1) Creation of the metamodel and transforamtions (T0):
As part of the MDE lecture, the students, as a first as-
signment, had to create a competition/tournament modeling
language and write transformation scripts to transform a
competition/tournament model into (I) a betting model (model-
to-model transformation) and (II) a betting website (model-to-
text transformation). We provided the betting metamodel as
well as a description of a typical betting website.

The participants used EMF/Ecore to define their metamodels,
and they had the choice between the transformation languages
ETL or ATL (model-to-model) and EGL or Acceleo (model-
to-text), all used in an Eclipse environment1.

This first task acted as a preparation for the main part of
our experiment which is comprised of the following tasks.

2) Metamodel evolution (T1): The first task for the par-
ticipants was to evolve their metamodel, in particular by
applying breaking changes that will have an impact on the
transformations. However, we requested that each participant
applies the following impacting changes (that we know are
breaking changes from [14]):
(a) Delete elements (i.e., class/attributes/reference/parameter),
(b) Rename elements,
(c) Increase the multiplicity of an element from [0..1] to [*]

(i.e., from single valued to multi valued),
(d) Move attributes/reference to another class,
(e) Push attributes/reference to subclasses.

The types of applied changes consisted of atomic and
complex changes [12], [13]. Atomic changes are individual
additions, removals, and updates of model elements. Complex
changes consist of sequences of atomic changes combined
together. In comparison to the atomic changes alone, complex
changes include additional information on the interrelation

1http://www.eclipse.org/modeling/emf/, http://www.eclipse.org/epsilon/doc/etl/,
https://eclipse.org/atl/, http://www.eclipse.org/epsilon/doc/egl/,
https://www.eclipse.org/acceleo/

Table I: Data information.

Size of Metamodels in
number of elements

Size of Transformations
in number of LOC

Participants
/Domains Original Evolved Original Evolved

P1:PokerTournament 89 85 377 355
P2:DanceTournament 86 84 153 153
P3: eSportsLeague 57 52 131 128
P4:SpaceRace 55 59 150 156
P5:SoccerEmModel 73 76 117 117
P6:languageolympics 84 83 194 203
P7:BasketballLeague 74 78 175 165
P8:contest 28 26 303 312
P9:Hackathon 57 55 101 101
P10:soccer_Tournament 63 54 308 315
P11:codingcontest 119 108 205 218
P12:nfl 109 113 576 573
P13:basketball 75 73 116 116
P14:golf_competition 49 49 148 148
P15:MPRPS 56 66 136 138

of these atomic changes. For example, push property is a
complex change where a property is moved from a superclass
to subclasses. This is composed of multiple atomic changes,
namely: one delete of property in the superclass and several
adds of the property in the subclasses.

3) Impact analysis (T2): After evolving the metamodels,
the participants had to identify manually the impacted parts of
the transformations in order to co-evolve them afterwards.

4) Transformation co-evolution (T3): The final task was to
co-evolve the impacted transformations, while documenting the
applied resolutions. Furthermore, we have asked the participants
to report on alternative resolutions that they can think of.

C. Data

Table I gives information about the used metamodels and
transformations. It shows the size of the metamodels in number
of elements and the size of the transformations in number of
lines of code, for both original and evolved artifacts.

D. Research Questions

To investigate what is currently known about the co-evolution
of transformations and to further learn about the manual co-
evolution, we have defined the following research questions:

• RQ1: To what extend do transformation editors help in
locating the impacted parts in a written transformation?
This investigates whether providing an impact analysis is
necessary or not when automating the co-evolution.

• RQ2: Do alternative resolutions often occur during co-
evolution? This aims to investigate whether per impacted
transformation, a unique resolution is often agreed upon,
or alternative resolutions may be applied.

• RQ3: To what extent do the complex changes help
during the co-evolution of transformations? This aims
to investigate the benefit of detecting and having the
knowledge of complex changes during the co-evolution.

• RQ4: What are the applied resolutions? As no catalog
of resolutions exist, this aims to document a practically
relevant set of resolutions that should be considered for



automation. It also allows us to assess the application
frequency of each resolution.

• RQ5: To what extent are current automatic co-evolution
techniques useful in our experiment? What are future work
perspectives to enhance the state-of-the-art? Knowing the
applied resolutions in our experiment, we can assess
to what extent the existing techniques can handle the
performed transformation co-evolution. This also aims to
identify improvement aspects of current techniques that
can be addressed in future work.

I I I . R E S U LT S A N D A N A LY S I S

A. RQ1: To what extend do the transformation editors help in
locating the impacted parts in a written transformation?

All our participants reported about the lack of support
by the transformation languages/editors to locate impacted
transformations, and also where exactly a transformation
rule is impacted. Surprisingly, the used languages/editors
did not even provide basic compilation support to highlight
errors on the transformation rules themselves, as it is done
in most of programming languages. To better illustrate the
observed participants feedback, herein is an excerpt of what
the participants reported on this lack of support for impact
analysis.

"The ETL file showed no errors when opening it in the editor.
The reason for this is that the ETL editor only checks for syntax
errors and doesn’t look into the referenced model at design
time. Also the EGX program and the EGL templates showed
no errors because of the same reasons."

As a consequence the participants performed a manual im-
pact analysis to locate the impacted parts of the transformations.
They used the knowledge of the applied metamodel changes.
They also used the execution log of the transformations and
the raised exceptions. This knowledge combination allowed
the identification of the impacted parts of the transformations.

"When automatizing the transformation co-evolution,
impact analysis should be included as part of the approach
to release this burden from the user."

B. RQ2: Do alternative resolutions often occur during co-
evolution?

To investigate the presence of alternative resolutions, we
asked the participants to think about alternatives when possible.
Only one participant highlighted an alternative repair for
a transformation rule. As further investigation we checked
how the different participants co-evolved transformations that
were impacted by the same type of changes, e.g., how
impacted transformations by delete changes are co-evolved
by the different participants. We observed that the participants’
transformations were co-evolved with different resolutions,
which shows that alternative resolutions are indeed necessary
to cope with various co-evolution scenarios.

For example, many participants applied a change multiplicity
from 1..1 to 1..*, which in turn impacted multiple transforma-
tion rules. In some cases, a for iterator was introduced to access

all values, and in some other cases, the operation first() was used
to retrieve the first value of the collection. Another example
where many participants applied different resolutions to co-
evolve the same impact of move property changes. Depending
on how the moved property was accessed (either from the
source class or from the target class), the navigation path was
either extended (e.g., from obj.p to obj.ref.p) or reduced (e.g.,
from obj.ref.p to obj.p).

Our observations thus confirm the presence of alternative
resolutions, although not explicitly reported by most partic-
ipants. However, as the set of alternative resolutions can be
very large, identifying all alternative resolutions is a complex
and challenging task which would require a larger scale study.

"As co-evolution is a creative task, a transformation can
be co-evolved with alternative resolutions, which should
be considered when automating the co-evolution."

C. RQ3: To what extent do the complex changes help during
the co-evolution of transformations?

When analyzing the co-evolved transformations, we found
that in most cases the applied resolutions are an intention to
propagate the metamodel changes to the transformation rules.
For example, every delete property p change led to a deletion
of parts of the impacted transformations where p is used.

We observed that the applied complex changes, which had
an impact on transformations, were indeed helpful during co-
evolution, in comparison to atomic changes alone. The complex
changes were useful in two ways. First, if only atomic changes
are treated independently and not together as complex changes
the applied resolutions would have been different. For example,
considering a move property p as two independent changes
delete property p and add property p, would lead to different
resolutions as reported by the participants. Indeed, while the
participants proposed to extend/reduce the navigation path
accessing the property p since it is moved to another class,
considering the independent changes delete property p and
add property p would lead to delete the transformation part
that uses p. Second, with atomic changes only, the user must
spend extra effort in understanding the relations between atomic
changes and identifying complex changes which have been
already automated (e.g., in [13], [11]). In this experiment the
same participants evolved the metamodel and co-evolved the
transformations. Thus, the above issue did not arise. However,
the above issue would arise if the evolution and co-evolution
were performed by different developers, which is common in
large or distributed software development projects.

"Complex changes helped in our experiment to co-
evolve the transformations, and when automating the
co-evolution, not only atomic changes but also complex
changes should be considered."

D. RQ4: What are the applied resolutions?
Before assessing whether the current co-evolution techniques

of transformations are suitable to automate the manual co-
evolution w.r.t. the users’ intent, i.e., whether they cover the



Table II: Applied resolutions during the co-evolution of
transformations, with some examples from our participants.

Applied Resolutions

B[R1]
Remove an element used as part of an assignment
in a transformation rule

B[R2]
Remove part of a transformation (e.g., a line, a whole
IF/loop/assignment instruction, etc.) rule

B[R3] Remove element used in a transformation template
B[R4] Rename elements
B[R5] Reduce navigation path of an accessed element

B[R6]
Remove container call
(e.g., d.eContainer().contestants → d.contestants)

B[R7] Introduce a loop to iterate on a collection
B[R8] Extend navigation path of an accessed element

B[R9]
Introduce operation first() on a collection
(e.g., lng.name → lng.name.first())

B[R10]
Replace an element with another one
(e.g., "... + p.name" → "... + gr.title")

B[R11] Replace an element by a default value
B[R12] Replace an IF condition with another one
B[R13] Rename transformation rule name
B[R14] Introduce in If express testing different multiplicities

applied resolutions by our participants in this experiment. We
must first list and categorize all manually applied resolutions.

Table II shows the applied resolutions by our participants
and Figure 1 shows the frequency of their application in our
experiment. Six resolutions were applied only once during the
experiment while the other eight resolutions were applied at
least six times and up to 104 times. Furthermore, Figure 2
shows the number of participants that applied each resolution.
We observed that seven resolutions that were applied multiple
times, were in fact applied by at least two different participants.
This shows that those resolutions have an implicit consensus
of their usefulness among our participants and they are likely
to be agreed upon for automation.

"Table II represents an initial set of resolutions that
should be considered for automation. In particular the
resolutions that were applied multiple times and by
multiple participants."

E. RQ5: To what extent are current automatic co-evolution
techniques useful in our our experiment? What are future work
perspectives to enhance the state-of-the-art?

To answer this research question, we have investigated the
main co-evolution and refactoring approaches of transforma-
tions, namely: Alkhazi et al. [1], Kusel, et al. [14], Garcia et
al. [4], Ruscio et al. [2], Garces et al. [3], and Mendez [15].
The threat to validity of missing a relevant approach and how
we addressed this issue will be discussed in section V.

The first insight from investigating [1], [14], [4], [2], [3],
[15] is that all those approaches include an impact analysis
to identify the impacted transformations and do not delegate
it to the users. Moreover, in order to assess to what extent
the existing co-evolution approaches of transformations can

Figure 1: Number of applied resolutions by all participants in
the experiment (Note the logarithmic scale).

Figure 2: FrequencyRelevance.

handle automatically the manual co-evolution performed in our
experiment, we investigated the supported resolutions in the
existing approaches. Thus, we can see which resolutions from
Table II are considered in the existing approaches [1], [14],
[4], [2], [3], [15]. Table III illustrates the supported resolutions
from Table II in the exiting approaches. We observed that no
existing approach supports all manually applied resolutions in
our experiment. This shows that the existing approaches cannot
fully automate the performed co-evolution in out experiment,
and thus, they are insufficient in the context of our experiment.

To alleviate this limitation, the missing resolutions can be
first included in the existing approaches, which remains a
matter of implementation. However, the main issue is that it is
likely on other case studies that new resolutions would emerge.
Thus, a future perspective would be to investigate empirically
the applied resolutions on a larger set of data to converge
on a common (and large) catalog of resolutions, similarly
as it exist in refactoring. Nonetheless, since maintenance
and co-evolution tasks are a creative engineering task, it is
likely that there will always exist special cases that would
require manual intervention from developers. We think that
as a future perspective it would be interesting to distinguish
atomic resolutions and complex resolutions analogously to



Table III: Existing techniques for transformation co-evolution
and their mapping to resolutions in Table II.

Resol-
utions

Alkhazi
et al. [1]

Kusel,
et al. [14]

Garcia
et al. [4]

Ruscio et
al. [2]

Garces
et al. [3]

Mendez
et al. [15]

[R1] × × X × × ×

[R2] × X X × X X

[R3] × X X X X ×

[R4] X X × X X X

[R5] × × × × X ×

[R6] × × × × × ×

[R7] × × X × × ×

[R8] × X X X X X

[R9] × × X × × ×

[R10] × × × X × X

[R11] × × × × × ×

[R12] × × × × × ×

[R13] X × × × × ×

[R14] × × × × × ×

atomic and complex changes. It would be possible to propose a
composition mechanism of resolutions (from atomic to complex
resolutions) that can be guided by the user to co-evolve his/her
transformations as near as possible to his/her intent. Therefore,
different co-evolution scenarios could be handled which is not
the case of the current existing techniques in our experiment.

"The currently investigated approaches showed to be
insufficient in the context of our experiment due to a
lack of resolution support."

I V. D I S C U S S I O N

Following the results analysis, we conducted a follow-up
survey with the participants to collect their feedback on the
experiment and more insight on the results. Out of the 15
participants, 10 answered in the survey. While all participants
agreed upon the necessity to automate the co-evolution due to
the difficulty of the manual co-evolution, only three participants
preferred a fully automated co-evolution, while the rest rather
preferred a semi-automated co-evolution. This was motivated
by the fact that full automation would not guarantee that the
transformations are co-evolved w.r.t. the users’ intent, which
requires users’ intervention in the end.

We also asked the participants about which kind of a semi-
automation would they prefer (multiple choices were allowed)
between 1) User decision 2) User confirmation and 3) User
input. User decision of what and how to apply resolutions
came first with eight approvals, then User confirmation of
the applied resolutions came as a second characteristic of a
semi-automatic co-evolution with seven approvals. Providing
concrete value as User Input came in third position with four
approvals. Note that the two first choices User decision and
User confirmation were preferred due to the fact that they

require minimum intervention from the user while User input
requires higher intervention effort providing values.

However, this is merely the beginning of an answer. To the
best of our knowledge, it is little known which type of semi-
automation would be more appropriate and in which context.
In addition, a semi-automatic approach could combine the
different types of user intervention, and an experiment study
would be necessary to assess in which context a combination
is more appropriate than another.

V. T H R E AT S T O VA L I D I T Y

This section discusses the internal, external and conclusion
threats to validity after Wohlin et. al. [27].

Internal Validity. In our experiment we selected master
students as subject participants. Recent studies [22], [24] have
shown that students can be valid subjects for experiments
and that students are well representative when it comes to
new developed tasks. Nonetheless, to further reduce this threat
here we selected master students that already have a working
experience and that were working in parallel in a half time
programming job. Thus, we aimed at selecting participants near
to a junior experienced developer. Finally, we did not inform
the participants what we are investigating to avoid influencing
them, however, we informed them that they will be graded for
these tasks to fully ensure the participants’ involvement.

External Validity. The used transformation languages in
our experiment are ETL, ATL, EGL, and Acceleo. Thus,
we cannot generalize our findings and observation to other
transformation languages, especially w.r.t. the impact analysis
observations where each transformation language differently
handles differently the error detection. Nonetheless, most of the
transformation languages share common concepts and similar
grammar. In particular, the documented resolutions could also
be applied to transformations written in other transformation
languages. Moreover, the applied impacting metamodel changes
did not cover all possible changes. However, they covered the
main impacting changes that break the transformation rules [14].
Our goal was not to exhaustively apply all possible metamodel
changes but to investigate how impacted transformations are
co-evolved. Those threats are acceptable here.

Conclusion Validity. Only 15 students participated in this
experiment. From a statistical point of view it would surely
be better to include more participants both from academia and
industry in order to gain a more precise insight and empirical
evidence. However, results gained herein are sufficient to get an
idea of what are the characteristics and difficulties to automate
the co-evolution of transformations. Moreover, while assessing
whether the existing co-evolution approaches of transformations
are sufficient (in section III-E), we might have missed some
approaches. To reduce this risk, for our 6 selected approaches,
we used a snow ball strategy and Google-scholar to identify
which new papers are citing the 6 selected papers. However, we
did not perform a systematic literature review. Our goal herein
was to assess whether the main known approaches within the
community would be sufficient in our experiment to automate
the transformations’ manual co-evolution.



V I . R E L AT E D W O R K

Maintenance is a major cost factor during the development
of software and co-evolution support could potentially reduce
that cost. To the best of our knowledge, so far no investigation
explored manual co-evolution to identify and understand
the aspects and characteristics for an efficient automatic co-
evolution. There are some studies that focused on comparing
transformation tools [10], [5] but not their maintenance and co-
evolution. Perez et al. [18] who compared how transformations
can be used for program refactoring activities. Rose et al. [20],
[21] also compared how different transformation tools are used
to co-evolve model instances. However, they investigated model
co-evolution and not transformation co-evolution. Rose et al.
[19] compared two approaches of transformation co-evolution
and already then they highlighted the lack of support for impact
analysis. Empirical work on transformation co-evolution was
focused on very general questions [19] without using subjects
to investigate the manual co-evolution of transformations. Our
experiment consisted in running a manual co-evolution of
transformations to better understand the requirements for an
efficient automation for future approaches. It also investigated to
what extent the existing techniques can automate the performed
manual co-evolution.

V I I . C O N C L U S I O N

In this paper, we conducted and reported on an exploratory
experiment with 15 participants investigating the evolution
and the co-evolution of transformations. The results show
that while transformation languages provide no support for
impact analysis, the existing co-evolution approaches already
support the user with an automatic impact analysis. However,
we also observed that those existing approaches do not consider
proposing a very large spectrum of alternative resolutions.
In particular, among the 14 resolutions that occurred in our
experiment, on average 4 (up to 6) out of the 14 were supported
by the existing approaches. Finally, we highlighted the learned
lessons and discussed potential future perspectives on how
to improve the current state-of-the-art in transformations’ co-
evolution.

As a future work, we plan to reproduce the same experiment
with other participants on the same original data to especially
attempt to identify more alternative resolutions. We also plan to
run two similar experiments on co-evolution of model instances
and constraints due to metamodel evolution. Thus, it would
then be very interesting to compare the co-evolution of the
different artifacts altogether.

Acknowledgments. The research leading to these results
has received funding from the Austrian Science Fund (FWF)
under the grants P25289-N15.

R E F E R E N C E S

[1] B. Alkhazi, T. Ruas, M. Kessentini, M. Wimmer, and W. I. Grosky.
Automated refactoring of atl model transformations: a search-based
approach. In The ACM/IEEE 19th MODELS, pages 295–304, 2016.

[2] D. Di Ruscio, L. Iovino, and A. Pierantonio. A methodological approach
for the coupled evolution of metamodels and atl transformations. In
ICMT, pages 60–75. Springer, 2013.

[3] K. Garcés, J. M. Vara, F. Jouault, and E. Marcos. Adapting transfor-
mations to metamodel changes via external transformation composition.
Software & Systems Modeling, 13(2):789–806, 2014.

[4] J. García, O. Diaz, and M. Azanza. Model transformation co-evolution:
A semi-automatic approach. SLE, 7745:144–163, 2013.

[5] R. Grønmo, B. Møller-Pedersen, and G. K. Olsen. Comparison of three
model transformation languages. In ECMDA-FA, pages 2–17. Springer,
2009.

[6] R. Hebig, D. E. Khelladi, and R. Bendraou. Surveying the corpus of
model resolution strategies for metamodel evolution. In 2015 Asia-Pacific
Software Engineering Conference (APSEC), pages 135–142. IEEE, 2015.

[7] R. Hebig, D. E. Khelladi, and R. Bendraou. Approaches to co-evolution
of metamodels and models: A survey. IEEE Transactions on Software
Engineering, 43(5):396–414, 2017.

[8] Z. Hemel, L. C. Kats, D. M. Groenewegen, and E. Visser. Code generation
by model transformation: a case study in transformation modularity.
Software and Systems Modeling, 9(3):375–402, 2010.

[9] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empirical
assessment of mde in industry. In ICSE, pages 471–480. ACM, 2011.

[10] E. Jakumeit, S. Buchwald, D. Wagelaar, L. Dan, Á. Hegedüs, M. Her-
rmannsdörfer, T. Horn, E. Kalnina, C. Krause, K. Lano, et al. A survey
and comparison of transformation tools based on the transformation tool
contest. Science of computer programming, 85:41–99, 2014.

[11] D. E. Khelladi, R. Bendraou, and M.-P. Gervais. Ad-room: a tool for
automatic detection of refactorings in object-oriented models. In ICSE
Companion, pages 617–620. ACM, 2016.

[12] D. E. Khelladi, R. Hebig, R. Bendraou, J. Robin, and M.-P. Gervais.
Detecting complex changes during metamodel evolution. In CAISE,
pages 263–278. Springer, 2015.

[13] D. E. Khelladi, R. Hebig, R. Bendraou, J. Robin, and M.-P. Gervais.
Detecting complex changes and refactorings during (meta) model
evolution. Information Systems, 2016.

[14] A. Kusel, J. Etzlstorfer, E. Kapsammer, W. Retschitzegger, W. Schwinger,
and J. Schonbock. Consistent co-evolution of models and transformations.
In ACM/IEEE 18th MODELS, pages 116–125, 2015.

[15] D. Mendez, A. Etien, A. Muller, and R. Casallas. Towards transformation
migration after metamodel evolution. ME Wokshop@MODELS, 2010.

[16] T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies
using graph transformation. Software and Systems Modeling, 6(3):269,
2007.

[17] T. Mens and P. Van Gorp. A taxonomy of model transformation.
Electronic Notes in Theoretical Computer Science, 152:125–142, 2006.

[18] J. Pérez, Y. Crespo, B. Hoffmann, and T. Mens. A case study to evaluate
the suitability of graph transformation tools for program refactoring.
International Journal on Software Tools for Technology Transfer (STTT),
12(3):183–199, 2010.

[19] L. Rose, A. Etien, D. Mendez, D. Kolovos, R. Paige, and F. Polack.
Comparing model-metamodel and transformation-metamodel coevolution.
In International workshop on models and evolutions, 2010.

[20] L. M. Rose, M. Herrmannsdoerfer, S. Mazanek, P. Van Gorp, S. Buchwald,
T. Horn, E. Kalnina, A. Koch, K. Lano, B. Schätz, et al. Graph and
model transformation tools for model migration. Software & Systems
Modeling, 13(1):323–359, 2014.

[21] L. M. Rose, M. Herrmannsdoerfer, J. R. Williams, D. S. Kolovos,
K. Garcés, R. F. Paige, and F. A. Polack. A comparison of model
migration tools. In MODELS, pages 61–75. Springer, 2010.

[22] I. Salman, A. T. Misirli, and N. Juristo. Are students representatives of
professionals in software engineering experiments? In ICSE-Volume 1,
pages 666–676. IEEE Press, 2015.

[23] S. Sendall and W. Kozaczynski. Model transformation: The heart and
soul of model-driven software development. IEEE software, 20(5):42–45,
2003.

[24] M. Svahnberg, A. Aurum, and C. Wohlin. Using students as subjects-an
empirical evaluation. In 2nd ESEM, pages 288–290. ACM, 2008.

[25] J.-P. Tolvanen and S. Kelly. Metaedit+: defining and using integrated
domain-specific modeling languages. In The 24th ACM SIGPLAN
conference companion on OOPSLA, pages 819–820, 2009.

[26] G. Wachsmuth. Metamodel adaptation and model co-adaptation. In
ECOOP, pages 600–624. Springer, 2007.

[27] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in software engineering. Springer Science
& Business Media, 2012.


